If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-19X=83
We move all terms to the left:
X^2-19X-(83)=0
a = 1; b = -19; c = -83;
Δ = b2-4ac
Δ = -192-4·1·(-83)
Δ = 693
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{693}=\sqrt{9*77}=\sqrt{9}*\sqrt{77}=3\sqrt{77}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-3\sqrt{77}}{2*1}=\frac{19-3\sqrt{77}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+3\sqrt{77}}{2*1}=\frac{19+3\sqrt{77}}{2} $
| 0.25x+0.75=3 | | -4x+5=-10+10x | | x+59=-27 | | 53+-4x=37 | | 32+x=122 | | (3x+6)=81 | | 108+(2x)=(4x+80) | | 75+12.50x=339- | | 2x5x4+3+6=72 | | 3x+3-6(x+1)=6x+4 | | -8(-2x+3)=-1 | | 65-20y=133-14y | | 9x+6x-10=90 | | 00+1/5+10+4/5m=57 | | 9988/23=x | | 7x+10+150=360 | | 15=18-9x | | 7x+10+150=90 | | 9x+16+6x+15=19x+3 | | 7.2x+-11=-47 | | 18/36=x/100 | | 3+4x=4x-1 | | 5+5x=5x-5 | | 3/2|4r+4|-24=-21 | | (X+5)*(2x+5)=250 | | -7(t-1)=20 | | N+2=12x3 | | N+2=12x3= | | 0.5x4=-1+2x | | 4+2x=2x-2 | | 1/2*2-4=-1+2x | | 7x+-6=3x-26 |